
Policy Optimization and RL Algorithms

Arushi Somani

November 22, 2025

1 Introduction

With the benefit of hindsight, the story of algorithms that shape modern LLM RL is surprisingly
linear. Each new algorithm can be seen as a solution to the most painful problems the previous
algorithm(s) had. Now, the real history is messier— discoveries in parallel, dead ends, happy
accidents. But we’re going to discuss the clean version. The clean version, even though it’s
somewhat fictional, teaches something true about why these algorithms work.

Picture a robot stuck in a maze. The robot has no map, no guidance— just the ability to move
around and try things. We train it by letting it loose in the maze until something happens— maybe
it runs out of battery, maybe it finds the exit— and then give it a reward based on how it did.

Now let’s be precise. We have:

• An environment: states s, actions a, rewards r

• A robot operating according to a policy πθ(a | s)—a probability distribution over actions
given its current state, controlled by parameters θ.

• Our goal is to maximize expected total reward J(θ) = Eτ∼πθ
[R(τ)], where τ is a complete

trajectory from start to finish.

The fundamental question: how do we adjust θ to make our robot better?

2 REINFORCE

In a perfect world, we’d compute ∇θJ(θ)—the direction in parameter space that increases our
expected reward. We have J(θ) = Ex∼pθ [f(x)], where x is a trajectory, pθ is the distribution we
control (through θ) and f(x) is the total reward the environment gives us.

If we could differentiate through the entire process— from θ to actions to the reward f(x)— we’d
just back-propagate and call it a day. This would be optimizing J(θ) directly. But the environment
is a black box. We observe samples (x, f(x)) but can’t differentiate f with respect to θ.

So we need to find an estimate that we can differentiate. We want∇θJ(θ). Start with the definition:

J(θ) = Ex∼pθ [f(x)] =

∫
pθ(x) · f(x) dx

1



Take the gradient:

∇θEx∼pθ [f(x)] = ∇θ

∫
pθ(x) · f(x) dx

=

∫
∇θpθ(x) · f(x) dx

Here’s the key move: We want to turn this into an expectation so we can estiate it by sampling.
Expectations look like

∫
p(x)(something) dx. But right now we have

∫
∇p(x)(something) dx.

So what if we multiplied the numerator and denominator by pθ(x)?

∇θEx∼pθ [f(x)] =

∫
pθ(x)

pθ(x)
∇θpθ(x) · f(x) dx

=

∫
pθ(x)

∇θpθ(x)

pθ(x)
· f(x) dx

Notice that:

∇θ log pθ(x) =
1

pθ(x)
∇θpθ(x)

By the chain rule.

Substitute:

∇θJ(θ) = ∇θEx∼pθ [f(x)]

=

∫
pθ(x) · ∇θ log pθ(x) · f(x) dx

= Ex∼pθ [∇θ log pθ(x) f(x)]

This is the log-derivative trick, also called the score function trick. It’s beautiful: we can now
estimate this gradient just by sampling trajectories. Collect some x(1), . . . , x(N) from pθ, then:

∇θJ(θ) ≈
1

N

N∑
i=1

f(x(i))∇θ log pθ(x
(i)).

What does this mean? Instead of directly ”pushing up the reward f” (which we can’t differentiate),
we push up the log-probability of trajectories in proportion to how good they are.

Now we apply this to our robot. A trajectory is τ = ((s1, a1), ...(sτ , aτ )), the reward is R(τ). The
probability of a trajectory factors as πθ(τ) =

∏τ
t=1 πθ(at|st).

The gradient becomes:
∇θJ(θ) = Eτ∼πθ

[R(τ)∇θ log πθ(τ)]

For better credit assignment— so early actions aren’t blamed for late rewards they had less effect
on, we use reward-to-go:

Gt =
T∑

t′=t

γ t′−trt′ ,

2



giving us the standard per-time update:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=1

Gt∇θ log πθ(at | st)

]
.

In practice, we sample N episodes and estimate:

ĝ =
1

N

N∑
i=1

T∑
t=1

G
(i)
t ∇θ log πθ(a

(i)
t | s(i)t ).

REINFORCE works, it is not without flaw. Suppose our robot finds the exit and gets R(τ) = 100.
REINFORCE says ”great! make every action in that trajectory more likely—they all contributed
equally to this success!”

Even with discounting, where Gt =
∑T

t′=t γ
t′−t rt′ , so earlier mistakes are weighted less— we still

can’t attribute good actions (earlier or later in the trajectory) to the cause of the success.

This blunt assignment creates very high variance. In practice, you might need millions of samples
to train even simple tasks, because a lot of the gradient signal is noise.

3 Advantage

How can we fix this problem with REINFORCE? The key insight is this: we don’t actually care
about the absolute reward. We care about surprise. If an action does better than we expected
in that state—reward it. If it does worse than expected—punish it. If it does exactly what
we expected—don’t update at all. This notion of ”better or worse than expected” is called the
advantage of the action.

To calculate advantage, we need a baseline for each state—some measure of what we typically
expect to happen from there. Then we compare: did this particular trajectory do better or worse
than that baseline? A simple version looks like

At ≈ Gt − b(st).

However, when we modify our gradient estimator, we have to be careful not to make it biased. If
the expected value of our estimator no longer equals the true gradient, we’re optimizing the wrong
thing entirely—we’re no longer climbing toward J(θ) at all.

What baselines can we subtract without introducing bias? Here’s the wonderful thing. Any baseline
that depends only on the state—not on the action—leaves the estimator completely unbiased. Why?
Look at what happens:

Ea∼πθ(·|s) [b(s)∇θ log πθ(a | s)] = b(s) · Ea∼πθ(·|s)[∇θ log πθ(a | s)]︸ ︷︷ ︸
=0

= 0.

The baseline pulls out of the expectation over actions, and the remaining term is zero. This
makes intuitive sense too: a state-only baseline doesn’t favor any particular action, so it can’t
systematically push the policy in any direction.

3



Therefore we can subtract b(st) inside our gradient estimator without changing its expectation:

∇θJ(θ) = E

[
T∑
t=1

(
Gt − b(st)

)
∇θ log πθ(at | st)

]
.

This brings us to two functions we’ll use constantly:

• The value function: the expected return if we start in state s and follow policy π.

V π(s) = Eπ[Gt | st = s],

• The action-value function: the expected return if we are in state s, take action a once,
and then follow policy π thereafter.

Qπ(s, a) = Eπ[Gt | st = s, at = a],

The advantage is:
A(s, a) = Qπ(s, a)− V π(s),

and we’ll use this often below.

4 Actor-Critic

So we want to use the advantageA(s, a) = Q(s, a)−V (s) to improve REINFORCE. But immediately
we run into a practical problem: we don’t actually know V π or Qπ. We only see samples from our
rollouts.

One simple idea: for each state, keep track of the average return we’ve seen from it. That
works—but only if we see the same state many times. In chess, or in any complex environment,
that exact board position might never appear twice. We need some way to generalize our value
estimates across similar states.

The problem: we do not know V π or Qπ. We only see samples, so we must find a way to practically
estimate them. The key observation is to note the relationship between V and Q. Q looks one step
in the future using V . After we take an action at, we get a reward rt, reach state st+1 and then
the expected value from that state is V (st+1).

This is the Bellman one-step lookahead for Q:

Q(st, at) = E
[
rt + γV (st+1) | st, at

]
.

So Q, the value of taking action at in state st is the immediate reward and a discounted expected
value of the next state.

Now let’s plug this into the advantage equation:

A(st, at) = Q(st, at)− V (st)

= E
[
rt + γV (st+1)− V π(st) | st, at

]
.

4



This value inside of the expectation:

δπt = rt + γV (st+1)− V (st)

is called the temporal difference (TD) error. It’s an unbiased estimator of the advantage, but
it only needs one step of experience.

Of course, we don’t actually know the true V π(s). So here’s what we do: we learn two neural
networks that work together. The first network is the actor πθ(a | s)—the policy that chooses
actions. The second is the critic Vϕ(s)—a function that learns to predict the value of each state.
The critic’s job is to tell the actor: ”you’re in state s, and based on everything I’ve seen, I expect
you to get this much total return from here.”

We train them in tandem:

• Training the critic: We want the critic’s predictions to be accurate. So we collect experience
(st, at, rt, st+1) and minimize the squared TD error:

L(ϕ) = E
[(
Vϕ(st)− (rt + γVϕ(st+1))

)2]
.

We’re saying ”based on the reward we just got and our current estimate of the next state’s
value, this is what Vϕ(st) should have predicted.” We’re bootstrapping: using our own esti-
mates to improve our own estimates.

• Training the actor: We update the policy using the TD error as our advantage estimate:

∇θJ(θ) ≈ E

[
T∑
t=1

δt∇θ log πθ(at | st)

]
,

where δt = rt + γVϕ(st+1)− Vϕ(st).

Here’s the full picture. At each time step:

1. The actor takes action at in state st.

2. We observe reward rt and next state st+1.

3. The critic evaluates: ”I thought state st was worth Vϕ(st). Now I see we got reward rt and
landed in a state worth Vϕ(st+1). The TD error δt tells me whether this was better or worse
than expected.”

(a) If δt > 0, the outcome was better than expected—increase the probability of action at.

(b) If δt < 0, the outcome was worse than expected—decrease the probability of action at.

4. Update the critic so its prediction Vϕ(st) moves closer to the observed target rt + γVϕ(st+1).

This makes credit assignment local in time. Each action gets immediate feedback: did it lead
somewhere better or worse than expected? We don’t wait for the full episode to finish. The critic
Vϕ summarizes ”everything that happens after this point,” and the TD error δt tells us whether
this particular action improved or hurt our prospects.

5



Compare this to REINFORCE, which waits until the episode ends to compute the full return
Gt =

∑τ
t=1 γ

t−1rt. If the episode is long, early actions wait hundreds of time steps for a learning
signal. And that signal has high variance because it sums many random rewards. Actor-critic
bootstraps instead: we learn from each step immediately, using Vϕ to estimate the future rather
than waiting to observe it.

5 TRPO

We’ve made improvements to variance and credit assignment, but there is still a way that learning
might become unstable.

Picture this: our maze robot discovers that going LEFT at some intersection sometimes leads to
the exit. The critic estimates a positive advantage, so the actor update increases the probability
of LEFT. Next batch: mostly LEFT trajectories, advantage still looks good, so we crank LEFT even
higher. A few more iterations and we’ve collapsed to

πθ(a | s) ≈ 1[a = LEFT],

a nearly deterministic policy that always goes left.

If those initial trajectories were lucky, buggy, or unrepresentative, we’ve locked ourselves onto the
wrong answer. And now we’re stuck: the policy only explores left, so we never see evidence that
other directions might work better.

Here’s the deeper problem. We compute our gradient estimate using data from the current policy
πold. That gradient is only guaranteed to point in the right direction locally—for small changes to
the policy. If we take a huge step in that direction, we might end up with a new policy πθ that
behaves completely differently: it visits different states, puts all its probability mass on different
actions. The data we collected under πold no longer reflects what πθ would actually experience.

The gradient at πold wasn’t wrong. The problem is we trusted a local signal to make a non-local
change. We need a way to constrain how much the policy’s behavior can shift in a single update.

Here’s the setup. We’ve collected data under a fixed old policy πold: states st, actions at, and
advantage estimates At. Now we want to find a better policy πθ. Ideally, we’d like to evaluate how
well πθ would do on the states we’ve seen:

Ea∼πθ(·|st)
[
A(st, a)

]
,

where the states st come from πold but we’re asking what πθ would do in those states.

Expanding this expectation:

Ea∼πθ(·|st)[A(st, a)] =
∑
a

πθ(a | st)A(st, a).

Now here’s a trick. We don’t have samples from πθ—we only have samples from πold. But we can

6



rewrite this sum by multiplying and dividing by πold(a | st):∑
a

πθ(a | st)A(st, a) =
∑
a

πold(a | st)
πθ(a | st)
πold(a | st)︸ ︷︷ ︸

rt(θ)

A(st, a)

= Ea∼πold(·|st)[rt(θ)A(st, a)] .

This ratio rt(θ) = πθ(at | st)/πold(at | st) is called the importance ratio. It reweights old samples
to estimate what would happen under the new policy. If πθ puts more probability on action at
than πold did, the ratio is greater than 1 and we weight that sample more heavily. If πθ puts less
probability on it, the ratio is less than 1 and we weight it less.

This gives us the surrogate objective:

L(θ) = Et∼πold
[rt(θ)At] , where rt(θ) =

πθ(at | st)
πold(at | st)

.

If L(θ) increases, it means πθ is putting more weight on high-advantage actions and less on low-
advantage actions—an improvement.

So why not just maximize L(θ)? Because importance sampling can go badly wrong when πθ and
πold differ too much. Imagine some state-action pair (s, a) where πold(a | s) is tiny—say, 0.01—but
πθ(a | s) is large—say, 0.5. The importance ratio is 50. If we happened to see a positive advantage
for that action (maybe just by luck), it dominates the entire objective. We’re amplifying noise.

Worse: we can only evaluate L(θ) on states that πold visited. If πθ would visit completely different
states—states where the advantage is actually terrible—we have no way to see that in our data.
The surrogate L(θ) might look great while the true performance J(θ) is awful. The core issue: L(θ)
is a first-order approximation of J(θ) around πold. It’s valid locally, but if πθ strays too far, the
approximation breaks down.

TRPO’s solution is to explicitly constrain how far we’re allowed to move. We solve for:

max
θ

L(θ) subject to Es∼πold

[
DKL

(
πold(· | s) ∥ πθ(· | s)

)]
≤ δ,

for some small δ (typically around 0.01).

This constraint measures how different the new policy is from the old one. For each state s that
πold visits, we compute the KL divergence between the old action distribution and the new one. KL
divergence is always non-negative and equals zero only when the distributions are identical—the
bigger the KL, the more different the policies.

By keeping the average KL small, we create a ”trust region” around πold. Inside this region, we
trust that L(θ) is a good proxy for true performance. We’re allowing the policy to improve, but
forcing it to do so gradually—small, safe steps rather than wild leaps.

Under reasonable assumptions, you can prove that each TRPO update either improves performance
or stays roughly the same—it won’t catastrophically collapse. The trust region keeps us honest:
we only make changes we can justify with our current data.

7



6 PPO

TRPO works, but it’s complicated. That constraint DKL ≤ δ requires solving a constrained opti-
mization problem, which means computing second derivatives, inverting matrices—expensive op-
erations we’d rather avoid. Proximal Policy Optimization (PPO) keeps the core idea—”don’t
change too much”—but implements it much more simply.

Instead of adding a constraint, PPO modifies the objective itself. The key insight: if the importance
ratio rt(θ) = πθ(at | st)/πold(at | st) gets too far from 1, something’s wrong. So let’s just not allow
that to contribute.

Here’s PPO’s clipped objective:

LCLIP(θ) = Et

[
min

(
rt(θ)At, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
At

)]
,

where clip(r, 1− ϵ, 1 + ϵ) clamps r to the range [1− ϵ, 1 + ϵ] (typically ϵ = 0.2).

The min enforces a pessimistic bound: we only get credit when both the clipped and unclipped
objectives agree that we’re improving. If either one thinks we’re going too far, we stop benefiting.
The objective naturally saturates when importance ratios drift too far from 1.

7 GRPO

GRPO keeps PPO’s ”small step” spirit but recognizes that the value networks are a lot of fuss—
we have to train Vϕ(s) and worry about its learning dynamics. Is there a simpler way?

Here’s an observation: in LLM training, we already sample multiple completions for each prompt.
We don’t just generate one response and update on it—we generate a whole batch, maybe 8 or 16
completions per prompt, and score them all. That’s a lot of information about what’s good and
bad for this particular prompt. What if we use the group itself as the baseline?

Group-Relative Policy Optimization (GRPO) does exactly this. For each prompt q, sample
a group of K completions {oi}Ki=1 from the current policy. Score each one with a reward model or
programmatic verifier to get rewards {ri}Ki=1. The insight: we don’t care about the absolute reward
values—we care about which completions did better or worse relative to each other.

Normalize within the group:

r̃i =
ri − r̄

std(r)
, r̄ =

1

K

K∑
j=1

rj .

This gives us a z-score for each completion. If r̃i > 0, this completion did better than the group
average—reinforce it. If r̃i < 0, it did worse—suppress it. The normalization by standard deviation
accounts for how spread out the rewards are: if all completions got similar rewards, the group
doesn’t tell us much, so advantages stay small.

Now we need per-token advantages. The completion-level score r̃i applies to the entire output oi,
but we update token by token. The simplest approach: spread the score evenly across all Li tokens:

Âi,t =
1

Li
r̃i for t = 1, . . . , Li.

8



This length-normalization ensures that longer completions don’t accumulate more gradient just
because they have more tokens.

With advantages in hand, we optimize a PPO-style objective:

LGRPO(θ) = Eq, i, t

[
min

(
ii,t(θ) Âi,t, clip

(
ii,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)]
− β KL

(
πθ

∥∥ πref
)
,

where

ii,t(θ) =
πθ(oi,t | q, oi,<t)

πold(oi,t | q, oi,<t)
.

The first term is standard PPO clipping—same as before. The second term is a KL penalty that
keeps the policy πθ close to a fixed reference policy πref (usually the initial supervised fine-tuned
model). This prevents the policy from drifting too far from sensible behavior as it optimizes for
reward.

By using group-relative baselines, GRPO achieves variance reduction without training a critic,
cutting memory/compute, and works especially well when rewards are verifiable in domains like
math and code correctness. GRPO was invented in February 2024, a reminder that RL for LLMs
is still young and there are optimizations yet to be discovered.

8 Entropy Regularization

We use this opportunity to also talk about entropy regularization, a long-standing trick to keep
the policy from collapsing too quickly and to encourage exploration. We simply add the policy’s
entropy to the objective:

Lent(θ) = Et[L(θ)] + β Et

[
H
(
πθ(· | st)

)]
,

with weight β > 0 (often decayed over training).

For a categorical policy,

H(π) = −
∑
a

π(a | s) log π(a | s).

By adding entropy to the objective, we reward the policy for staying a bit ”uncertain”. Why does
this help? Without entropy regularization, the policy can collapse prematurely onto a single action
that looked good early in training, cutting off exploration.

In practice, β often starts moderate and decays over time. Early in training, we want broad
exploration. Later, once we’ve found promising regions, we can afford to become more deterministic
and exploit what we’ve learned. The decay schedule balances exploration early with exploitation
late.

This provides a chance for me to talk more about algorithm design, and add a bit of editorializing:
I believe that we’d ideally want entropy regularization to emerge naturally from the algorithm itself
(like soft actor-critics) rather than being bolted on as an auxiliary term.

9



9 Further Readings

Curious readers can further explore by learning about: Soft Actor-Critics, A3C, DPO, Constitu-
tional AI and Multi-Agent RL.

10


	Introduction
	REINFORCE
	Advantage
	Actor-Critic
	TRPO
	PPO
	GRPO
	Entropy Regularization
	Further Readings

