
Thesis Proposal: Automatically Learning and

Growing Libraries of Code

Arushi Somani

September 23, 2022

1 Introduction

DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep
Bayesian program learning (Ellis K et al 2019) introduces the idea of ”library
learning”. It posits that, given some primitives and the ability to combine
and test the use of such primitives, machines can learn to develop higher-level
routines, which can then further be combined. This form of curriculum learning
would allow machines to develop deep and complex libraries from simple start-
points, which can then be used as automated programmers.

My thesis work attempts to build upon the contributions of this paper in
two ways:

1. Instead of manually crafting a DSL of primitives for the model to build
upon, then iteratively training it on I/O tests as training set, we develop
a data-driven grammar induction technique. We instead use open-source
code available to us via Github and Kaggle to scalably learn idiomatic
patterns in our generated DSLs.

2. We also mine the internet for problems solved by our DSL. This can be
found as docstrings or of code that can then be executed to generate
appropriate I/O examples. We train our model to fantasize on these tests.
This allows the fantasizing phase to equate popular problems as more
”interesting”, thus biasing the model to solving them. We believe this a
strict improvement over the random model from the Dreamcoder paper.

2 Project Breakdown

As highlighted in the figure in the previous section, the project can be broken
down into phases and its sub-parts.

1



Figure 1: Dreamcoder Implementation

2.1 Wake Phase

The wake phase of the tool is the part where queries are given to the synthesis
engine as pairs of input/output examples (PBE). The synthesizer accepts this
query, a library of functions available to it, and a neural recognition model
that guides it through the problem space. It returns the best program that
implements the given task query, and also internally saves this program.

2.1.1 Bottom-up Enumerator

The core of the wake phase is a bottom-up enumerator, which walks through all
possible combinations of productions/rules of a grammar. What this implies is
that, given infinite time, we would find a program that solves a given task if it
exists (completeness).

The design of the enumerator is such that, at every step, it returns programs
that satisfy the given productions. Each production recursively calls more enu-
meration within it, with some terminals to stop the recursive process.

2.1.2 Library

The enumerator accepts its grammar as a library of functions L. These functions
can be thought of as primitives that can be used in the production process.

2.1.3 Recognition Model

The recognition model can be thought of as a ranking of what patterns of
enumeration are most likely, and helps the enumerator yield candidates in an
order of likelihood instead of in a brute-force fashion.

2



2.2 Sleep: Abstraction

This phase adds to the library. It abstracts away finer details of the differences
between functions found in the waking phase, and adds a higher-level routine
to the library.

2.2.1 Function Compressor

This section looks at the various functions found in the waking step, and pulls
out similar structures in the abstract syntax tree of these found functions. It
passes these higher abstracted functions away to the library adder.

2.2.2 Library Adder

This section accepts functions and adds them to the library — either as a
production or as a primitive (or both!). This library is then used in the waking
phase, and the newly added functions as now top-level citizens of this new
library.

2.3 Sleep: Dreaming

In this phase, we train our recognition model to be stronger than it is, and to
better enumerate programs in the waking phase.

2.3.1 Recognition Model Update

This section replays the programs found in the waking phase, and updates the
neural recognition model by these programs. Fantasies Update This section
comes up with theoretical programs that are “interesting”. The criteria for
interesting is not defined by the paper so we pick a wide one for our given
domain— they accept or return an example of the object defined in the domain.

3 Core Algorithms

In the above-defined phases, we execute various algorithms. The most salient
few are listed here.

3.1 Bottom-Up Enumerator Synthesis Engine

This is used in the wake phase to enumerate through a grammar using the
recognition model.

3.2 Expression Enumeration

Initially, we designed a depth-first enumeration model.
However, in practical testing, as library size grows — this algorithm be-

comes infeasible, since for every depth, the number of possible iterations are

3



Algorithm 1 Synthesis Engine

Task T , Grammar g, Recognition Model Q
Program ρ : ρ ∈ E(g) where E(g) = every possible program in g, or ρ = ⊥
sol← None
context← {}
step← 0
programs← GetExpressions(g,Q, context, step)

while programs ̸= ∅ doρ← next(programs)

if Satisfies(p, T) then return ρ
return ⊥

Algorithm 2 GetExpressions Depth

Grammar g, Recognition Model Q, context C
Programs ρ : ρ ∈ E(g) where E(g) = every program in g ordered by Q

while program not found do depth← 0
order ← Q.order(depth,
[Variable,Function,Application])

for rule ∈ order do

yield from GetEnums(rule, depth, C)
depth← depth+ 1

len(primitives)!. Instead, we move to a different algorithm that does not rely so
heavily on depth, which is as follows:

Algorithm 3 GetExpressions Step

Grammar g, Recognition Model Q, context C, step s
Programs ρ : ρ ∈ E(g) where E(g) = every program in g ordered by Q

while program not found do
order ← Q.order(step,
[Variable,Function,Application])

for rule ∈ order do

yield from GetEnums(rule, step+ 1, C)

We consider non-terminals in the grammar to be a variable name, a function,
or an application. This is encoded as defined in GetEnums.

4



Algorithm 4 GetEnums

Rule r, Recognition Model Q, context C | grammar g
Programs ρ : ρ ∈ E(g) where E(r) = every program in r ordered by Q

if r = Variable then

for var ∈ C do yield var

if r = Function then
arg ← UnusedVarName
C ′ ← C + arg
bodies← GetExpressions(g,Q,C ′, step+ 1)

for body ∈ bodies do
yield lambda arg:body

if r = Application then
expr1← GetExpressions(g,Q,C, step+ 1)
expr2← GetExpressions(g,Q,C, step+ 1)

for e1, e2 ∈ expr1 · expr2 do yield e1(e2)

4 Related Work

4.1 Criticisms of Dreamcoder

This section elaborates upon the limitations of the original Dreamcoder project.
This section is deemed important because of the need to understand prior lit-
erature, and the weaknesses we are attempting to improve upon.

4.1.1 Synthesis Duration Explosion

As found during experimentation, and explained in the original paper, the neu-
ral model takes a long time to ramp up and start learning intelligible patterns.
Leaving the model running for 36+ hours on 1 CPU only had very minimal learn-
ing of a small library of basic functions. While part of this is admittedly because
of our poor optimization, the paper admits that an untrained recognition model
would take very long to ramp up to being able to guide the enumeration — the
training phase was probably substantially longer than their mentioned testing
phase of 1-24 hours per task.

4.1.2 Need to Learn from Failures

The core problem with the learning model of this setup is that learning happens
only through the correct solutions. Correct solutions, however, are very hard to
come by, and incorrect candidates still have learnings that can be pulled from.
For example, using them in the fantasies phase if they passed a substantial

5



number (but not all) of the tests, a heuristic that they perform a different but
no less relevant operation on the inputs.

4.1.3 Lack of Metric for “Interestingness” in Fantasies

To DreamCoder, all fantasies are interesting fantasies, so long as they are not
buggy code. As such, the model does come up with extremely interesting func-
tions, it also comes up with noisy and uninteresting functions. However, all of
these are added to the model and the library. This causes the model to be more
imprecise than it should be, and causes the library to bloat.

4.1.4 Explainability and Readability

The output of the system doesn’t have any. This tool is clearly not meant to
be used by an individual. If it ever were to be incorporated as a real life tool to
be used, the details of its functioning would necessarily have to be abstracted
away from the user.

4.2 Comparative Analysis

This section elaborates upon the differences between our project and the canoni-
cal DreamCoder. Needless to say, Dreamcoder has a lot more bells and whistles,
and a lot more tooling to help it learn and operate at higher benchmarks. This
section attempts to explain some of these shortcomings of Dreamer.

4.2.1 Wake Phase: Enumerator

In Dreamcoder, the enumerator is not a lambda calculus enumerator. Instead, it
is a grammar enumerator, that stores a complex grammar that includes lambda
calculus principles, and at every level of the recursive enumeration, emits these
rules in order. Our enumerator only has three simple productions, which means
we have to explore at greater depth to find solutions.

4.2.2 Library

As mentioned previously, we store new functions as variables that our enumer-
ator can use in any of its productions. Dreamcoder stores new functions as
productions themselves,.

4.2.3 Recognition Model

Our recognition model is a simple one-layer neural network. The dreamcoder
recognition model is a “Contextual Grammar Network”. They have developed
a lot of featurizing tools over their programs, which helps their network train
faster and yield better results. It is also worth mentioning that the recognition
model in dreamcoder has much more complex feature extraction than our tool.

6



4.2.4 Focus on Creative Tasks

Unlike our project, which tries to develop DreamCoder for PBE tasks like string
edits or list manipulation. However, DreamCoder is more focused on creative
tasks, like drawing in LOGO or with bricks. As such, the metric for success is
much less complex, as something that looks interesting is a successful develop-
ment. Curriculum learning is made easier, whereas in our domain, it is much
harder to do so.

5 Future Work

As elaborated in the introduction, there is future work to be done in terms
of adding robustness to the grammar induction techniques, as well as further
mining and development of the continuous fantast testing suite. I look forward
to continuing this project beyond this thesis.

7


	Introduction
	Project Breakdown
	Wake Phase
	Bottom-up Enumerator
	Library
	Recognition Model

	Sleep: Abstraction
	Function Compressor
	Library Adder

	Sleep: Dreaming
	Recognition Model Update


	Core Algorithms
	Bottom-Up Enumerator Synthesis Engine
	Expression Enumeration

	Related Work
	Criticisms of Dreamcoder
	Synthesis Duration Explosion
	Need to Learn from Failures
	Lack of Metric for “Interestingness” in Fantasies
	Explainability and Readability

	Comparative Analysis
	Wake Phase: Enumerator
	Library
	Recognition Model
	Focus on Creative Tasks


	Future Work

