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1 Introduction

The recent exponential development and adoption of programming assistants like Codex and Github
Copilot raises the question of how these generative assistants best interact with the human devel-
opers. The fundamental goal of these assistants is to abstract away the “how”, and allow the
programmer to focus on the “what”. Through this lens, we analyze two different state of the art
interfaces for synthesis: code suggestion using auto-completion, and code generation using Program-
ming by Example/Demonstration.

For auto-complete suggestion generators like Copilot, they are excellent tools for writing boilerplate
code. However, they bear two critical flaws:

1. Lack of Abstraction: There is no abstraction created between the programmer and the
programming assistant. The power of these suggestion tools is to suggest code the user was
thinking about writing and not necessarily code that the user does not need to worry about
writing.

2. Lack of Guarantees of Correctness: There are no guarantees about the correctness of the
generated code. Once an autocomplete suggestion is accepted, the programmer either needs
to verify it using their own reasoning and keep coding, or the programmer needs to halt their
code-writing, develop a small testing framework, test the generated code, and then continue.

Programming by example and programming by demonstration tools do create an abstraction between
the programmer and the AI, and they have correctness baked within the design. However, they bear
other flaws that we elucidate here:
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• Synthesis Duration: These assistants often take a long time to synthesize programs. This
duration increases as the complexity of the I/O or demonstration increases. It also abstracts
away the entirety of the synthesis process, such that users develop frustration around re-
specifying the problem repeatedly because of ambiguous specifications.

• Difficulty of Generating Examples: For problems like PBE, it is sometimes notoriously
difficult to generate examples — this is because a lot of the program might have complex inputs
and outputs like entire files or multiple levels of user input. Such a technique only works in
specific domains.

In this project, we suggest a new interface that allows programmers to focus solely on the logic
underlying their task. We propose the following concepts, answering the following questions:

1. Enforcing Abstraction

• How could we encourage the human developers to best focus on the “what”, and abstract
away the “how” of programming?

• When synthesis fails, how can we allow the programmer to increase the granularity of the
specification to better assist the synthesis engine?

2. Feedback and Conversation with the User

• How could we develop trust between the user and the synthesized code, such that the
user could rely on the generated code blocks without needing to manually read through
them or write a test bench for them?

• How could we allow the user to test the code without needing to write detailed and
exhaustive I/O examples?

• How can we integrate feedback about corrections to the program received from the oracle
into our generation step?

We present RedString, an interface for programming, built on Python and backed by Transformer
based generative models, that allows users to synthesize functions, test them, and compose them
together to form larger programs.

2 Related Work

There has been previous work that performs usability testing studies on using Large Language
Models in programming [1] [2]. Our project is a derivative of these, and will build up upon these
projects. These has also been some work in developing new interfaces for LLMs [3]. However, the
core of these works is the underlying models instead of the interface that exposes them. Some work
[4] has attempted to expose a novel interface to these models. However, this work limits itself to
visual domains like the web and HTML domain. Our project develops a general interface for all
functional programming problems.
With how recent these LLM tools are, there has not been much investigation into the best way of
using them, despite long-standing trends.
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3 Planned Approach

We suggest two core techniques to solve the questions and concepts suggested above.

3.1 Enforcing Abstraction through Dynamic Abstraction Barriers

Programming is inherently recursive — functions call functions which call functions. We use this
inherent design of programs to create dynamic abstraction barriers. The user defines functions at a
high-level in a pseudo-code like fashion, and then relies on the LLM to define the function that is
used.
We elaborate with an example.
Let’s pretend that the user were to write something like this:

def tic_tac_toe():

board = init_board()

while True:

board = player_x_takes_action(board)

winner = get_winner(board)

if winner is not None:

announce_winner(winner)

return

board = player_o_takes_action(board)

winner = get_winner(board)

if winner is not None:

announce_winner(winner)

return

After this, the user would rely on the LLM to define init board and player x takes action and
so on and so forth, for every function that is used within tic tac toe.

What if the synthesis engine is not able to come up with a correct function (say, player x takes action)
The user would then increase the granularity of their specification. They would additionally specify:

def player_x_takes_action(board):

while True:

action = get_action_from_user()

if can_make_action(action, board):

return edit_board_on_action(board, action)

else:

print("Incorrect input, try again")

This increases the work that the user has to do, but decreases the load upon the synthesis engine to
make crucial decisions — like having to take input from the user, for example. This method takes
code-writing from suggestion-design to instead a conversation between the user and the synthesis
tool, where the errors of the synthesis tool request the user to provide more details.

3.2 Receiving Feedback Through Oracle-Guidance

It is commonly known that large language models work best at high values for k when used under
Pass@K models [3]. We use three insights to develop a feedback mechanism for our synthesis tool:
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1. Since the function written by the synthesis engine is a complete module, we can evaluate it to
make sure that it does not error on simple computation.

2. Since we have the call to that function, if we were to get an example of input/output values
from the user, we could trivially execute the function to make sure there are no run-time errors.

3. Once we have a syntactically correct function, if we were to characterize the types of inputs,
we could ”fuzz” the function, and represent every branch taken by one input/output example.

Thus, in our model, we initially request a single characteristic input example from the user (if appli-
cable). If the user is synthesizing many functions, we infer the input example from the pseudo-code
structure. In the tic tac toe example, we can infer the input to player x takes action (”board”)
as the output from init board — which we would already have synthesized.

The core idea here is that, if we could get the output of a function checked off, we could use it as a
reliable input to the next synthesized function. Through this structure, the user would be able to
”sanity test” the functions generated manner for their correctness.

However, just a single sanity test might not be enough to win over the trust of the user. We want
to show the user one iteration of every possible output type. To do this, we employ modern fuzzing
techniques. We could use concolic execution techniques to come up with random examples that give
us complete branch coverage. Since the generated module is necessarily small, this would not be
inefficient. We also would be happy with any set of examples that span the branches of the program,
which loosens the constraints of generating this set.

The only condition here would be that we wish to generate readable examples. Here, we posit an
assumption that, in functional programming, the readability of the input is directly related to its
size. Thus, we will bias our fuzzing model towards generating smaller inputs, which we posit would
be a decent heuristic for interpretable I/O examples generated.

4 Success Criteria

Lastly, we talk about what our evaluation phase would be and what ”success” would look like for
this project. Our evaluation phase would include presenting a prototype of our synthesis interface
to users, presenting them with code problems to solve, and judging by the following metrics:

1. Whether they were able to solve a problem they can solve without any code assistant tools

2. Whether they are able to solve a problem they cannot solve on their own

3. Whether the time taken to solve the problem decreases when using our prototype versus when
programming on their own

4. Whether the time taken to solve the problem decreases when using our prototype versus when
programming with a SOTA assistant like Github Copilot

Our hypothesis states that this interface would allow programmers to solve more problems that they
would be able to completely on their own, in lesser time.
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